3.2.98 \(\int \frac {\coth ^2(c+d x)}{(a+b \tanh ^2(c+d x))^3} \, dx\) [198]

3.2.98.1 Optimal result
3.2.98.2 Mathematica [A] (verified)
3.2.98.3 Rubi [A] (verified)
3.2.98.4 Maple [A] (verified)
3.2.98.5 Fricas [B] (verification not implemented)
3.2.98.6 Sympy [F]
3.2.98.7 Maxima [B] (verification not implemented)
3.2.98.8 Giac [B] (verification not implemented)
3.2.98.9 Mupad [F(-1)]

3.2.98.1 Optimal result

Integrand size = 23, antiderivative size = 178 \[ \int \frac {\coth ^2(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^3} \, dx=\frac {x}{(a+b)^3}-\frac {b^{3/2} \left (35 a^2+42 a b+15 b^2\right ) \arctan \left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{8 a^{7/2} (a+b)^3 d}-\frac {\left (8 a^2+27 a b+15 b^2\right ) \coth (c+d x)}{8 a^3 (a+b)^2 d}+\frac {b \coth (c+d x)}{4 a (a+b) d \left (a+b \tanh ^2(c+d x)\right )^2}+\frac {b (9 a+5 b) \coth (c+d x)}{8 a^2 (a+b)^2 d \left (a+b \tanh ^2(c+d x)\right )} \]

output
x/(a+b)^3-1/8*b^(3/2)*(35*a^2+42*a*b+15*b^2)*arctan(b^(1/2)*tanh(d*x+c)/a^ 
(1/2))/a^(7/2)/(a+b)^3/d-1/8*(8*a^2+27*a*b+15*b^2)*coth(d*x+c)/a^3/(a+b)^2 
/d+1/4*b*coth(d*x+c)/a/(a+b)/d/(a+b*tanh(d*x+c)^2)^2+1/8*b*(9*a+5*b)*coth( 
d*x+c)/a^2/(a+b)^2/d/(a+b*tanh(d*x+c)^2)
 
3.2.98.2 Mathematica [A] (verified)

Time = 6.80 (sec) , antiderivative size = 166, normalized size of antiderivative = 0.93 \[ \int \frac {\coth ^2(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^3} \, dx=-\frac {-\frac {8 (c+d x)}{(a+b)^3}+\frac {b^{3/2} \left (35 a^2+42 a b+15 b^2\right ) \arctan \left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{a^{7/2} (a+b)^3}+\frac {8 \coth (c+d x)}{a^3}+\frac {4 b^3 \sinh (2 (c+d x))}{a^2 (a+b)^2 (a-b+(a+b) \cosh (2 (c+d x)))^2}+\frac {b^2 (13 a+7 b) \sinh (2 (c+d x))}{a^3 (a+b)^2 (a-b+(a+b) \cosh (2 (c+d x)))}}{8 d} \]

input
Integrate[Coth[c + d*x]^2/(a + b*Tanh[c + d*x]^2)^3,x]
 
output
-1/8*((-8*(c + d*x))/(a + b)^3 + (b^(3/2)*(35*a^2 + 42*a*b + 15*b^2)*ArcTa 
n[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a]])/(a^(7/2)*(a + b)^3) + (8*Coth[c + d*x] 
)/a^3 + (4*b^3*Sinh[2*(c + d*x)])/(a^2*(a + b)^2*(a - b + (a + b)*Cosh[2*( 
c + d*x)])^2) + (b^2*(13*a + 7*b)*Sinh[2*(c + d*x)])/(a^3*(a + b)^2*(a - b 
 + (a + b)*Cosh[2*(c + d*x)])))/d
 
3.2.98.3 Rubi [A] (verified)

Time = 0.48 (sec) , antiderivative size = 203, normalized size of antiderivative = 1.14, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.565, Rules used = {3042, 25, 4153, 25, 374, 25, 441, 25, 445, 25, 397, 218, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\coth ^2(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int -\frac {1}{\tan (i c+i d x)^2 \left (a-b \tan (i c+i d x)^2\right )^3}dx\)

\(\Big \downarrow \) 25

\(\displaystyle -\int \frac {1}{\tan (i c+i d x)^2 \left (a-b \tan (i c+i d x)^2\right )^3}dx\)

\(\Big \downarrow \) 4153

\(\displaystyle -\frac {\int -\frac {\coth ^2(c+d x)}{\left (1-\tanh ^2(c+d x)\right ) \left (b \tanh ^2(c+d x)+a\right )^3}d\tanh (c+d x)}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int \frac {\coth ^2(c+d x)}{\left (1-\tanh ^2(c+d x)\right ) \left (b \tanh ^2(c+d x)+a\right )^3}d\tanh (c+d x)}{d}\)

\(\Big \downarrow \) 374

\(\displaystyle -\frac {\frac {\int -\frac {\coth ^2(c+d x) \left (-5 b \tanh ^2(c+d x)+4 a+5 b\right )}{\left (1-\tanh ^2(c+d x)\right ) \left (b \tanh ^2(c+d x)+a\right )^2}d\tanh (c+d x)}{4 a (a+b)}-\frac {b \coth (c+d x)}{4 a (a+b) \left (a+b \tanh ^2(c+d x)\right )^2}}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {-\frac {\int \frac {\coth ^2(c+d x) \left (-5 b \tanh ^2(c+d x)+4 a+5 b\right )}{\left (1-\tanh ^2(c+d x)\right ) \left (b \tanh ^2(c+d x)+a\right )^2}d\tanh (c+d x)}{4 a (a+b)}-\frac {b \coth (c+d x)}{4 a (a+b) \left (a+b \tanh ^2(c+d x)\right )^2}}{d}\)

\(\Big \downarrow \) 441

\(\displaystyle -\frac {-\frac {\frac {b (9 a+5 b) \coth (c+d x)}{2 a (a+b) \left (a+b \tanh ^2(c+d x)\right )}-\frac {\int -\frac {\coth ^2(c+d x) \left (8 a^2+27 b a+15 b^2-3 b (9 a+5 b) \tanh ^2(c+d x)\right )}{\left (1-\tanh ^2(c+d x)\right ) \left (b \tanh ^2(c+d x)+a\right )}d\tanh (c+d x)}{2 a (a+b)}}{4 a (a+b)}-\frac {b \coth (c+d x)}{4 a (a+b) \left (a+b \tanh ^2(c+d x)\right )^2}}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {-\frac {\frac {\int \frac {\coth ^2(c+d x) \left (8 a^2+27 b a+15 b^2-3 b (9 a+5 b) \tanh ^2(c+d x)\right )}{\left (1-\tanh ^2(c+d x)\right ) \left (b \tanh ^2(c+d x)+a\right )}d\tanh (c+d x)}{2 a (a+b)}+\frac {b (9 a+5 b) \coth (c+d x)}{2 a (a+b) \left (a+b \tanh ^2(c+d x)\right )}}{4 a (a+b)}-\frac {b \coth (c+d x)}{4 a (a+b) \left (a+b \tanh ^2(c+d x)\right )^2}}{d}\)

\(\Big \downarrow \) 445

\(\displaystyle -\frac {-\frac {\frac {-\frac {\int -\frac {8 a^3-8 b a^2-27 b^2 a-15 b^3+b \left (8 a^2+27 b a+15 b^2\right ) \tanh ^2(c+d x)}{\left (1-\tanh ^2(c+d x)\right ) \left (b \tanh ^2(c+d x)+a\right )}d\tanh (c+d x)}{a}-\frac {\left (8 a^2+27 a b+15 b^2\right ) \coth (c+d x)}{a}}{2 a (a+b)}+\frac {b (9 a+5 b) \coth (c+d x)}{2 a (a+b) \left (a+b \tanh ^2(c+d x)\right )}}{4 a (a+b)}-\frac {b \coth (c+d x)}{4 a (a+b) \left (a+b \tanh ^2(c+d x)\right )^2}}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {-\frac {\frac {\frac {\int \frac {8 a^3-8 b a^2-27 b^2 a-15 b^3+b \left (8 a^2+27 b a+15 b^2\right ) \tanh ^2(c+d x)}{\left (1-\tanh ^2(c+d x)\right ) \left (b \tanh ^2(c+d x)+a\right )}d\tanh (c+d x)}{a}-\frac {\left (8 a^2+27 a b+15 b^2\right ) \coth (c+d x)}{a}}{2 a (a+b)}+\frac {b (9 a+5 b) \coth (c+d x)}{2 a (a+b) \left (a+b \tanh ^2(c+d x)\right )}}{4 a (a+b)}-\frac {b \coth (c+d x)}{4 a (a+b) \left (a+b \tanh ^2(c+d x)\right )^2}}{d}\)

\(\Big \downarrow \) 397

\(\displaystyle -\frac {-\frac {\frac {\frac {\frac {8 a^3 \int \frac {1}{1-\tanh ^2(c+d x)}d\tanh (c+d x)}{a+b}-\frac {b^2 \left (35 a^2+42 a b+15 b^2\right ) \int \frac {1}{b \tanh ^2(c+d x)+a}d\tanh (c+d x)}{a+b}}{a}-\frac {\left (8 a^2+27 a b+15 b^2\right ) \coth (c+d x)}{a}}{2 a (a+b)}+\frac {b (9 a+5 b) \coth (c+d x)}{2 a (a+b) \left (a+b \tanh ^2(c+d x)\right )}}{4 a (a+b)}-\frac {b \coth (c+d x)}{4 a (a+b) \left (a+b \tanh ^2(c+d x)\right )^2}}{d}\)

\(\Big \downarrow \) 218

\(\displaystyle -\frac {-\frac {\frac {\frac {\frac {8 a^3 \int \frac {1}{1-\tanh ^2(c+d x)}d\tanh (c+d x)}{a+b}-\frac {b^{3/2} \left (35 a^2+42 a b+15 b^2\right ) \arctan \left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{\sqrt {a} (a+b)}}{a}-\frac {\left (8 a^2+27 a b+15 b^2\right ) \coth (c+d x)}{a}}{2 a (a+b)}+\frac {b (9 a+5 b) \coth (c+d x)}{2 a (a+b) \left (a+b \tanh ^2(c+d x)\right )}}{4 a (a+b)}-\frac {b \coth (c+d x)}{4 a (a+b) \left (a+b \tanh ^2(c+d x)\right )^2}}{d}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {-\frac {\frac {\frac {\frac {8 a^3 \text {arctanh}(\tanh (c+d x))}{a+b}-\frac {b^{3/2} \left (35 a^2+42 a b+15 b^2\right ) \arctan \left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{\sqrt {a} (a+b)}}{a}-\frac {\left (8 a^2+27 a b+15 b^2\right ) \coth (c+d x)}{a}}{2 a (a+b)}+\frac {b (9 a+5 b) \coth (c+d x)}{2 a (a+b) \left (a+b \tanh ^2(c+d x)\right )}}{4 a (a+b)}-\frac {b \coth (c+d x)}{4 a (a+b) \left (a+b \tanh ^2(c+d x)\right )^2}}{d}\)

input
Int[Coth[c + d*x]^2/(a + b*Tanh[c + d*x]^2)^3,x]
 
output
-((-1/4*(b*Coth[c + d*x])/(a*(a + b)*(a + b*Tanh[c + d*x]^2)^2) - (((-((b^ 
(3/2)*(35*a^2 + 42*a*b + 15*b^2)*ArcTan[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a]])/ 
(Sqrt[a]*(a + b))) + (8*a^3*ArcTanh[Tanh[c + d*x]])/(a + b))/a - ((8*a^2 + 
 27*a*b + 15*b^2)*Coth[c + d*x])/a)/(2*a*(a + b)) + (b*(9*a + 5*b)*Coth[c 
+ d*x])/(2*a*(a + b)*(a + b*Tanh[c + d*x]^2)))/(4*a*(a + b)))/d)
 

3.2.98.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 374
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[(-b)*(e*x)^(m + 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q 
 + 1)/(a*e*2*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*2*(b*c - a*d)*(p + 1)) 
 Int[(e*x)^m*(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[b*c*(m + 1) + 2*(b*c - 
a*d)*(p + 1) + d*b*(m + 2*(p + q + 2) + 1)*x^2, x], x], x] /; FreeQ[{a, b, 
c, d, e, m, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && IntBinomialQ[a, b, 
 c, d, e, m, 2, p, q, x]
 

rule 397
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*((c_) + (d_.)*(x_)^2)), x_ 
Symbol] :> Simp[(b*e - a*f)/(b*c - a*d)   Int[1/(a + b*x^2), x], x] - Simp[ 
(d*e - c*f)/(b*c - a*d)   Int[1/(c + d*x^2), x], x] /; FreeQ[{a, b, c, d, e 
, f}, x]
 

rule 441
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
)*((e_) + (f_.)*(x_)^2), x_Symbol] :> Simp[(-(b*e - a*f))*(g*x)^(m + 1)*(a 
+ b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/(a*g*2*(b*c - a*d)*(p + 1))), x] + Si 
mp[1/(a*2*(b*c - a*d)*(p + 1))   Int[(g*x)^m*(a + b*x^2)^(p + 1)*(c + d*x^2 
)^q*Simp[c*(b*e - a*f)*(m + 1) + e*2*(b*c - a*d)*(p + 1) + d*(b*e - a*f)*(m 
 + 2*(p + q + 2) + 1)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m, q}, 
 x] && LtQ[p, -1]
 

rule 445
Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_ 
.)*((e_) + (f_.)*(x_)^2), x_Symbol] :> Simp[e*(g*x)^(m + 1)*(a + b*x^2)^(p 
+ 1)*((c + d*x^2)^(q + 1)/(a*c*g*(m + 1))), x] + Simp[1/(a*c*g^2*(m + 1)) 
 Int[(g*x)^(m + 2)*(a + b*x^2)^p*(c + d*x^2)^q*Simp[a*f*c*(m + 1) - e*(b*c 
+ a*d)*(m + 2 + 1) - e*2*(b*c*p + a*d*q) - b*e*d*(m + 2*(p + q + 2) + 1)*x^ 
2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] && LtQ[m, -1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4153
Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], 
 x]}, Simp[c*(ff/f)   Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2 + f 
f^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, 
n, p}, x] && (IGtQ[p, 0] || EqQ[n, 2] || EqQ[n, 4] || (IntegerQ[p] && Ratio 
nalQ[n]))
 
3.2.98.4 Maple [A] (verified)

Time = 0.42 (sec) , antiderivative size = 167, normalized size of antiderivative = 0.94

method result size
derivativedivides \(-\frac {-\frac {\ln \left (\tanh \left (d x +c \right )+1\right )}{2 \left (a +b \right )^{3}}+\frac {b^{2} \left (\frac {\left (\frac {11}{8} a^{2} b +\frac {9}{4} a \,b^{2}+\frac {7}{8} b^{3}\right ) \tanh \left (d x +c \right )^{3}+\frac {a \left (13 a^{2}+22 a b +9 b^{2}\right ) \tanh \left (d x +c \right )}{8}}{\left (a +b \tanh \left (d x +c \right )^{2}\right )^{2}}+\frac {\left (35 a^{2}+42 a b +15 b^{2}\right ) \arctan \left (\frac {b \tanh \left (d x +c \right )}{\sqrt {a b}}\right )}{8 \sqrt {a b}}\right )}{\left (a +b \right )^{3} a^{3}}+\frac {1}{a^{3} \tanh \left (d x +c \right )}+\frac {\ln \left (\tanh \left (d x +c \right )-1\right )}{2 \left (a +b \right )^{3}}}{d}\) \(167\)
default \(-\frac {-\frac {\ln \left (\tanh \left (d x +c \right )+1\right )}{2 \left (a +b \right )^{3}}+\frac {b^{2} \left (\frac {\left (\frac {11}{8} a^{2} b +\frac {9}{4} a \,b^{2}+\frac {7}{8} b^{3}\right ) \tanh \left (d x +c \right )^{3}+\frac {a \left (13 a^{2}+22 a b +9 b^{2}\right ) \tanh \left (d x +c \right )}{8}}{\left (a +b \tanh \left (d x +c \right )^{2}\right )^{2}}+\frac {\left (35 a^{2}+42 a b +15 b^{2}\right ) \arctan \left (\frac {b \tanh \left (d x +c \right )}{\sqrt {a b}}\right )}{8 \sqrt {a b}}\right )}{\left (a +b \right )^{3} a^{3}}+\frac {1}{a^{3} \tanh \left (d x +c \right )}+\frac {\ln \left (\tanh \left (d x +c \right )-1\right )}{2 \left (a +b \right )^{3}}}{d}\) \(167\)
risch \(\frac {x}{a^{3}+3 a^{2} b +3 a \,b^{2}+b^{3}}-\frac {-60 b^{5} {\mathrm e}^{6 d x +6 c}+90 b^{5} {\mathrm e}^{4 d x +4 c}+8 a^{5}+15 b^{5}+40 a^{4} b +93 a^{3} b^{2}+113 a^{2} b^{3}+67 a \,b^{4}-60 b^{5} {\mathrm e}^{2 d x +2 c}+66 a^{2} b^{3} {\mathrm e}^{4 d x +4 c}-138 a \,b^{4} {\mathrm e}^{6 d x +6 c}+172 a \,b^{4} {\mathrm e}^{4 d x +4 c}-158 a \,b^{4} {\mathrm e}^{2 d x +2 c}+77 a^{2} b^{3} {\mathrm e}^{8 d x +8 c}+57 a \,b^{4} {\mathrm e}^{8 d x +8 c}+15 b^{5} {\mathrm e}^{8 d x +8 c}+32 a^{5} {\mathrm e}^{6 d x +6 c}+8 a^{5} {\mathrm e}^{8 d x +8 c}+32 \,{\mathrm e}^{2 d x +2 c} a^{5}+48 \,{\mathrm e}^{4 d x +4 c} a^{5}-56 a^{2} b^{3} {\mathrm e}^{6 d x +6 c}+40 \,{\mathrm e}^{8 d x +8 c} a^{4} b +67 \,{\mathrm e}^{8 d x +8 c} a^{3} b^{2}+96 \,{\mathrm e}^{2 d x +2 c} a^{4} b +90 \,{\mathrm e}^{2 d x +2 c} a^{3} b^{2}-72 \,{\mathrm e}^{2 d x +2 c} a^{2} b^{3}+112 \,{\mathrm e}^{4 d x +4 c} a^{4} b +96 \,{\mathrm e}^{4 d x +4 c} a^{3} b^{2}+96 b \,a^{4} {\mathrm e}^{6 d x +6 c}+38 a^{3} b^{2} {\mathrm e}^{6 d x +6 c}}{4 \left (a \,{\mathrm e}^{4 d x +4 c}+b \,{\mathrm e}^{4 d x +4 c}+2 \,{\mathrm e}^{2 d x +2 c} a -2 b \,{\mathrm e}^{2 d x +2 c}+a +b \right )^{2} \left (a^{2}+2 a b +b^{2}\right ) \left (a +b \right ) a^{3} d \left ({\mathrm e}^{2 d x +2 c}-1\right )}+\frac {35 \sqrt {-a b}\, \ln \left ({\mathrm e}^{2 d x +2 c}-\frac {2 \sqrt {-a b}-a +b}{a +b}\right ) b}{16 a^{2} \left (a +b \right )^{3} d}+\frac {21 \sqrt {-a b}\, \ln \left ({\mathrm e}^{2 d x +2 c}-\frac {2 \sqrt {-a b}-a +b}{a +b}\right ) b^{2}}{8 a^{3} \left (a +b \right )^{3} d}+\frac {15 \sqrt {-a b}\, b^{3} \ln \left ({\mathrm e}^{2 d x +2 c}-\frac {2 \sqrt {-a b}-a +b}{a +b}\right )}{16 a^{4} \left (a +b \right )^{3} d}-\frac {35 \sqrt {-a b}\, \ln \left ({\mathrm e}^{2 d x +2 c}+\frac {2 \sqrt {-a b}+a -b}{a +b}\right ) b}{16 a^{2} \left (a +b \right )^{3} d}-\frac {21 \sqrt {-a b}\, \ln \left ({\mathrm e}^{2 d x +2 c}+\frac {2 \sqrt {-a b}+a -b}{a +b}\right ) b^{2}}{8 a^{3} \left (a +b \right )^{3} d}-\frac {15 \sqrt {-a b}\, b^{3} \ln \left ({\mathrm e}^{2 d x +2 c}+\frac {2 \sqrt {-a b}+a -b}{a +b}\right )}{16 a^{4} \left (a +b \right )^{3} d}\) \(833\)

input
int(coth(d*x+c)^2/(a+b*tanh(d*x+c)^2)^3,x,method=_RETURNVERBOSE)
 
output
-1/d*(-1/2/(a+b)^3*ln(tanh(d*x+c)+1)+b^2/(a+b)^3/a^3*(((11/8*a^2*b+9/4*a*b 
^2+7/8*b^3)*tanh(d*x+c)^3+1/8*a*(13*a^2+22*a*b+9*b^2)*tanh(d*x+c))/(a+b*ta 
nh(d*x+c)^2)^2+1/8*(35*a^2+42*a*b+15*b^2)/(a*b)^(1/2)*arctan(b*tanh(d*x+c) 
/(a*b)^(1/2)))+1/a^3/tanh(d*x+c)+1/2/(a+b)^3*ln(tanh(d*x+c)-1))
 
3.2.98.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 5772 vs. \(2 (162) = 324\).

Time = 0.44 (sec) , antiderivative size = 11865, normalized size of antiderivative = 66.66 \[ \int \frac {\coth ^2(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^3} \, dx=\text {Too large to display} \]

input
integrate(coth(d*x+c)^2/(a+b*tanh(d*x+c)^2)^3,x, algorithm="fricas")
 
output
Too large to include
 
3.2.98.6 Sympy [F]

\[ \int \frac {\coth ^2(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^3} \, dx=\int \frac {\coth ^{2}{\left (c + d x \right )}}{\left (a + b \tanh ^{2}{\left (c + d x \right )}\right )^{3}}\, dx \]

input
integrate(coth(d*x+c)**2/(a+b*tanh(d*x+c)**2)**3,x)
 
output
Integral(coth(c + d*x)**2/(a + b*tanh(c + d*x)**2)**3, x)
 
3.2.98.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1944 vs. \(2 (162) = 324\).

Time = 0.65 (sec) , antiderivative size = 1944, normalized size of antiderivative = 10.92 \[ \int \frac {\coth ^2(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^3} \, dx=\text {Too large to display} \]

input
integrate(coth(d*x+c)^2/(a+b*tanh(d*x+c)^2)^3,x, algorithm="maxima")
 
output
-1/4*(3*a^2*b + 3*a*b^2 + b^3)*log((a + b)*e^(4*d*x + 4*c) + 2*(a - b)*e^( 
2*d*x + 2*c) + a + b)/((a^6 + 3*a^5*b + 3*a^4*b^2 + a^3*b^3)*d) + 1/4*(3*a 
^2*b + 3*a*b^2 + b^3)*log(2*(a - b)*e^(-2*d*x - 2*c) + (a + b)*e^(-4*d*x - 
 4*c) + a + b)/((a^6 + 3*a^5*b + 3*a^4*b^2 + a^3*b^3)*d) + 1/32*(15*a^3*b 
- 25*a^2*b^2 - 39*a*b^3 - 15*b^4)*arctan(1/2*((a + b)*e^(2*d*x + 2*c) + a 
- b)/sqrt(a*b))/((a^6 + 3*a^5*b + 3*a^4*b^2 + a^3*b^3)*sqrt(a*b)*d) - 1/32 
*(15*a^3*b - 25*a^2*b^2 - 39*a*b^3 - 15*b^4)*arctan(1/2*((a + b)*e^(-2*d*x 
 - 2*c) + a - b)/sqrt(a*b))/((a^6 + 3*a^5*b + 3*a^4*b^2 + a^3*b^3)*sqrt(a* 
b)*d) + 1/16*(8*a^5 + 31*a^4*b + 72*a^3*b^2 + 98*a^2*b^3 + 64*a*b^4 + 15*b 
^5 + (8*a^5 + 49*a^4*b + 18*a^3*b^2 + 38*a*b^4 + 15*b^5)*e^(8*d*x + 8*c) + 
 2*(16*a^5 + 57*a^4*b - 9*a^3*b^2 + 37*a^2*b^3 - 39*a*b^4 - 30*b^5)*e^(6*d 
*x + 6*c) + 2*(24*a^5 + 56*a^4*b + 83*a^3*b^2 - 37*a^2*b^3 + 53*a*b^4 + 45 
*b^5)*e^(4*d*x + 4*c) + 2*(16*a^5 + 39*a^4*b + 73*a^3*b^2 + 15*a^2*b^3 - 6 
5*a*b^4 - 30*b^5)*e^(2*d*x + 2*c))/((a^8 + 5*a^7*b + 10*a^6*b^2 + 10*a^5*b 
^3 + 5*a^4*b^4 + a^3*b^5 - (a^8 + 5*a^7*b + 10*a^6*b^2 + 10*a^5*b^3 + 5*a^ 
4*b^4 + a^3*b^5)*e^(10*d*x + 10*c) - (3*a^8 + 7*a^7*b - 2*a^6*b^2 - 18*a^5 
*b^3 - 17*a^4*b^4 - 5*a^3*b^5)*e^(8*d*x + 8*c) - 2*(a^8 + a^7*b + 2*a^6*b^ 
2 + 10*a^5*b^3 + 13*a^4*b^4 + 5*a^3*b^5)*e^(6*d*x + 6*c) + 2*(a^8 + a^7*b 
+ 2*a^6*b^2 + 10*a^5*b^3 + 13*a^4*b^4 + 5*a^3*b^5)*e^(4*d*x + 4*c) + (3*a^ 
8 + 7*a^7*b - 2*a^6*b^2 - 18*a^5*b^3 - 17*a^4*b^4 - 5*a^3*b^5)*e^(2*d*x...
 
3.2.98.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 437 vs. \(2 (162) = 324\).

Time = 0.46 (sec) , antiderivative size = 437, normalized size of antiderivative = 2.46 \[ \int \frac {\coth ^2(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^3} \, dx=-\frac {\frac {{\left (35 \, a^{2} b^{2} + 42 \, a b^{3} + 15 \, b^{4}\right )} \arctan \left (\frac {a e^{\left (2 \, d x + 2 \, c\right )} + b e^{\left (2 \, d x + 2 \, c\right )} + a - b}{2 \, \sqrt {a b}}\right )}{{\left (a^{6} + 3 \, a^{5} b + 3 \, a^{4} b^{2} + a^{3} b^{3}\right )} \sqrt {a b}} - \frac {8 \, {\left (d x + c\right )}}{a^{3} + 3 \, a^{2} b + 3 \, a b^{2} + b^{3}} - \frac {2 \, {\left (13 \, a^{3} b^{2} e^{\left (6 \, d x + 6 \, c\right )} + 3 \, a^{2} b^{3} e^{\left (6 \, d x + 6 \, c\right )} - 17 \, a b^{4} e^{\left (6 \, d x + 6 \, c\right )} - 7 \, b^{5} e^{\left (6 \, d x + 6 \, c\right )} + 39 \, a^{3} b^{2} e^{\left (4 \, d x + 4 \, c\right )} - 5 \, a^{2} b^{3} e^{\left (4 \, d x + 4 \, c\right )} + 25 \, a b^{4} e^{\left (4 \, d x + 4 \, c\right )} + 21 \, b^{5} e^{\left (4 \, d x + 4 \, c\right )} + 39 \, a^{3} b^{2} e^{\left (2 \, d x + 2 \, c\right )} + 25 \, a^{2} b^{3} e^{\left (2 \, d x + 2 \, c\right )} - 35 \, a b^{4} e^{\left (2 \, d x + 2 \, c\right )} - 21 \, b^{5} e^{\left (2 \, d x + 2 \, c\right )} + 13 \, a^{3} b^{2} + 33 \, a^{2} b^{3} + 27 \, a b^{4} + 7 \, b^{5}\right )}}{{\left (a^{6} + 3 \, a^{5} b + 3 \, a^{4} b^{2} + a^{3} b^{3}\right )} {\left (a e^{\left (4 \, d x + 4 \, c\right )} + b e^{\left (4 \, d x + 4 \, c\right )} + 2 \, a e^{\left (2 \, d x + 2 \, c\right )} - 2 \, b e^{\left (2 \, d x + 2 \, c\right )} + a + b\right )}^{2}} + \frac {16}{a^{3} {\left (e^{\left (2 \, d x + 2 \, c\right )} - 1\right )}}}{8 \, d} \]

input
integrate(coth(d*x+c)^2/(a+b*tanh(d*x+c)^2)^3,x, algorithm="giac")
 
output
-1/8*((35*a^2*b^2 + 42*a*b^3 + 15*b^4)*arctan(1/2*(a*e^(2*d*x + 2*c) + b*e 
^(2*d*x + 2*c) + a - b)/sqrt(a*b))/((a^6 + 3*a^5*b + 3*a^4*b^2 + a^3*b^3)* 
sqrt(a*b)) - 8*(d*x + c)/(a^3 + 3*a^2*b + 3*a*b^2 + b^3) - 2*(13*a^3*b^2*e 
^(6*d*x + 6*c) + 3*a^2*b^3*e^(6*d*x + 6*c) - 17*a*b^4*e^(6*d*x + 6*c) - 7* 
b^5*e^(6*d*x + 6*c) + 39*a^3*b^2*e^(4*d*x + 4*c) - 5*a^2*b^3*e^(4*d*x + 4* 
c) + 25*a*b^4*e^(4*d*x + 4*c) + 21*b^5*e^(4*d*x + 4*c) + 39*a^3*b^2*e^(2*d 
*x + 2*c) + 25*a^2*b^3*e^(2*d*x + 2*c) - 35*a*b^4*e^(2*d*x + 2*c) - 21*b^5 
*e^(2*d*x + 2*c) + 13*a^3*b^2 + 33*a^2*b^3 + 27*a*b^4 + 7*b^5)/((a^6 + 3*a 
^5*b + 3*a^4*b^2 + a^3*b^3)*(a*e^(4*d*x + 4*c) + b*e^(4*d*x + 4*c) + 2*a*e 
^(2*d*x + 2*c) - 2*b*e^(2*d*x + 2*c) + a + b)^2) + 16/(a^3*(e^(2*d*x + 2*c 
) - 1)))/d
 
3.2.98.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\coth ^2(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^3} \, dx=\int \frac {{\mathrm {coth}\left (c+d\,x\right )}^2}{{\left (b\,{\mathrm {tanh}\left (c+d\,x\right )}^2+a\right )}^3} \,d x \]

input
int(coth(c + d*x)^2/(a + b*tanh(c + d*x)^2)^3,x)
 
output
int(coth(c + d*x)^2/(a + b*tanh(c + d*x)^2)^3, x)